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Phase-induced atomic permutations in icosahedral 
quasicrystals: a model for self-diffusion 
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Received 4 July 1994 

Abstract. The process of phase-induced self-diffusion has been investigated for the three- 
dimensional Ammmn-Knmer-Penrose tiling. This happens along the lines of Kalugin and Katz 
for the octagonal planar tiling. It is found that for any permutation within two subsets of the ten 
veltices in a triacontahedral cage there is a corresponding loop in phase space. There are other 
loops by which vertices are exchanged between interlocked triacantahednl cages. Along c h i n s  
of such triaconmhedral cages, percolative diffusion is passible. This self-diffusion, however. 
occurs along two separated sublattices. Thus it is a two-component diffusion. 

1. Introduction 

Quasicrystals carry the additional degree of freedom of the ’phase’, as do incommensurably 
modulated crystals. In the latter the phase describes the relative position of the periodic basic 
structure and the incommensurate modulation wave. A change of phase in a quasiperiodic 
tiling causes a rearrangement of the tiles due to flips of selected vertices. If a tiling is 
constructed by the projection method or by the method of atomic surfaces, the phase denotes 
the position of the strip or the intersection point of parallel space E in orthogonal space E’, 
respectively. In a seminal paper Frenkel eta[ [l] have shown for the octagonal Ammann- 
Beenker tiling [2] that, if certain closed loops are traversed by the phase in E‘, the tiling 
returns to its original form, but with permutated atomic positions. These permutations 
have been viewed by Katz and Kalugin [3] as elementary steps in an atomic transport 
process, which at high temperatures drastically enhance the self-diffusivity. Hints for this 
phenomenon are coming from deformation experiments on quasicrystals: at about 80% of 
the absolute melting temperature the mechanical behaviour of quasicrystals changes from 
brittleness to ductility [ G I .  Evidently, at high temperatures plastic deformation occurs 
in quasicrystals through dislocation motion [7]. However, as dislocations are partials in 
quasicrystals, they drag along a stacking fault, i.e. a wall where the local phase is jumping. 
Hence the dislocations are greatly impeded in their mobility, unless the stacking fault is 
able to dissolve through self-diffusion. 

In this paper we study a possible mechanism for the self-diffusion process in the 
icosahedral Ammann-Gamer-Penrose tiling, which is a model for icosahedral quasicrystals 
[8]. We first repeat the geometry of the elementary atomic transport in the octagonal tiling 
and generalize it to the three-dimensional case. For good visualization the projection method 
and the method of atomic surfaces are employed. 
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2. Self-diffusion in the octagonal tiling 

In the standard planar octagonal Ammann-Beenker tiling 121, the acceptance domain is a 
regular octagon. The atomic surfaces consist of the same octagons, attached to the lattice 
points of a four-dimensional cubic lattice. They are oriented parallel to E ,  and are connected 
by 'steps' parallel to E'. 

A frequent subpattern in E is an octagonal cage, containing three vertices, such that 
the octagon is divided into two squares and four 45"-rhombi (figure I ) .  The three vertices 
belong to a small octagon inside the cage. In the canonical mapping 'p from E to E 

A Riidingrr and H- R Trebin 

2 1 

Figure 1. Decomposition of the octagon in E ( U )  ond its dual in E' ( b )  . 

with d = 4, the two concentric octagons in E x e  also mapped into two concentric octagons 
in E', but with the internal points becoming external ones and vice versa. In figure I the 
set M of the vertices of the decomposed octagon in E and the dual set M' = y ( M )  in E' 
are depicted (concerning the basis vectors, cf [9]). For the sake of clarity the bonds of the 
vertices in E are also drawn i n  E'. The acceptance domain in E is marked by thin lines. 
The images of three internal vertices in E are lying arbitrarily closet to the boundary of the 
acceptance domain in E'. They are occupying adjacent positions, so that M' can be moved 
into two linearly independent directions without leaving the acceptance domain. This is a 
necessary and sufficient condition for the occurrence of the corresponding subpattern M i n  
a perfect tiling. By an infinitesimal change of the phase one of these marginal points can 
leave the acceptance domain, and another one, separated by three edges. enters. Hence i n  
E a flip does occur for one of the internal vertices, whereas the vertices of the exterior 
cage remain untouched (figure 2). As can be seen in E and in E', two of the three internal 
vertices ( I  and 3) are able to flip. 

In the representation of atomic surfaces, the octagonal surfaces belonging to the eight 
internal positions of E are arranged as in figure 3, sharing a common vertex. The loop 

t In the figurrs. the poinls (hat an morked on the boundary are supposed 10 lie inside the acceptance domain 
within an s-neighbourhood of its boundary. 
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Figure Z The octagon in E (a)  and ifs dual inE' (b) ofter one Rip. 

Figure 3. Eight atomic srrrfaces. belonging to the eight intemal 
vertices of the octagonal cage. 

encircling this vertex, denoted by S ' ,  is responsible for the elementary transport process. 
A single atomic octagon in E' corresponds to one of the vertices inside the octagonal 

cage. It cuts a sector of'I35" out of the loop SI. We denote this sector 'influence domain 
of the vertex', because the vertex is occupied in E as long as the phase is contained in 
this domain. The atomic octagons altogether cut out eight sectors of 45". Each sector is 
being shared by three influence domains, belonging to the three internal vertices in E .  If 
the phase crosses the border of a sector, it changes from one domain to another, whereupon 
a flip happens in the octagonal cage. After the loop has been traversed, eight flips have 
occurred, taking the subpattern back to its original form, but permuting three atoms. 

This behaviour is due to the topological structure of the phase space, which can be 
described in terms of covering spaces. (For a treatment of covering spaces, cf [IO, 111.) 
Each of the eight atomic octagons shares two edges with two other octagons. If these edges 
are identified, a threesheeted local covering of E' results, with the central vertex becoming 
a branch point. The covering is sketched in figure 4, where the connection of the upper and 
Iower atomic octagon is omitted for the sake of clarity. It consists of eight patches which, 
projected to the base space, locally yield a decomposition of the latter into eight sectors. 
The eight patches correspond to the eight internal positions of an octagon in E,  and the eight 
sectors to the eight possible decompositions of an octagon. The fibre consists 
of three points, corresponding to the three internal vertices of an octagon in the tiling. 
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X m e  base point 

Figure 4. Three-aheeted covering of the neighbourhood of a vertex in E' and is projection to 
the base space. 

Figure 5. Bee-sheeted covering of S'  

3 
The restriction of the covering to SI contains all the local information of the covering 

near a branch point and is depicted schematically in figure 5, where again the open ends 
have to be identified. 

If xphaSe travels along a loop encircling the branch point, the result is a permutation 
of the internal vertices of an octagon, as described in [l]. We characterize the loops by 
elements of the fundamental group xi(S', no) = Z of the circle. The integer assigned to 
each loop is the winding number. We can construct a homomorphism f from xi(S', X O )  

to the permutation group of three objects, S3. This homomorphism is given explicitly by 

f : x,(S', xo) I+ s3 (1) 
z 3 n H f ( n )  = u "  E s3 (2) 
with U = (123) E S3. (3) 

The fact that a loop of winding number 1 does lead to a 3-cycle in S3 can also be seen 
by considering the eight flips in E' (cf figures I(b) and 2(b), where the first flip is shown). 
The representation of the flips according to figures I(b) and 2(b) will be especially helpful 
for the icosahedral case. 

In figure 6 two interlocked octagonal cages in E are displayed, their internal octagons 
being attached and sharing two edges. 

The 14 possible positions in E correspond to 14 atomic octagons in E', which are 
grouped around two vertices, separated by a basis vector. The local neighbourhood of these 
two vertices can be tested by two connected circles S'#S1 rr Si, sketched in figure 7. 

In analogy with the above example, a five-sheeted covering of SI results, consisting 
of 14 patches, the projection of which yields a decomposition of the base space into 14 
sectors. Therefore there are 14 possibilities of occupying five of the 14 internal positions. 
Encircling both vertices is equivalent to maversing a loop around one vertex first, then 
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Figure 6. Two interlocked octagons with internal Figure 7. 14 atomic surfaces arranged around two 
octagons being attached. WrtiCS. 

moving to the second, encircling it and returning. In this process a separate permutation of 
three atoms occurs in each internal octagon and, as a result, a cyclic permutation of the five 
vertices takes place in the double cage. In 1121 it is shown how the ring can be extended 
to infinite size up to a percolation limit. We are now going to extend these considerations 
to a three-dimensional quasicrystal. 

3. Remarks on the icosahedral Ammann-Kramer-Penrose pattern 

In the icosahedral quasicrystal as defined in [ 131, the acceptance domain is a triacontahedron, 
a polyhedron with 12 five-fold and 20 three-fold vertices, which displays icosahedral 
symmetry This triacontahedron is the convex hull of the six icosahedral vectors e: in 
E'. I n  physical space E ,  the corresponding vectors ej analogously form a triacontahedral 
cage, which occurs frequently in the icosahedral tiling. In the inner part of this cage 
32 possible vertex positions are located, ten of which are occupied in a perfect tiling. 
The triacontahedron is divided into ten prolate and ten oblate Ammann rhombohedra, 
the elementary tiIes of the icosahedral quasicrystal. It is worth mentioning that this 
decomposition has already been realized in the thirties [14]. In order to visualize the 
decomposition, we consider the canonical mapping cp from E to E', as shown above with 
d = 6. It maps the 32 vertices of the triacontahedron in E into the 32 internal vertices 
of the hiacontahedron in E' and vice versa. A subpattern M occurs in the perfect tiling 
if its dual M' = p(M) can be moved within the acceptance domain into three linearly 
independent directions. 

In figure 8 we are looking at the acceptance domain along a two-, three- and five- 
fold axis, respectively. The ten internal vertices in E are mapped onto ten vertices of the 
miacontahedron in E'; they are marked by a circle. The dual pattern can be moved within the 
acceptance domain, and therefore the corresponding decomposition of the hiacontahedron 
in E occurs with a finite frequency. The ten venices form two disjoint sets: three of them 
belong to the I2 five-fold vertices and seven to the 20 three-fold ones of the triacontahedron 
in E'. 

The decomposition does not display any symmetry, so that, in a perfect tiling, there are 
120 possibilities of occupying 10 of the 32 vertices inside a triacontahedral cage. They form 
two orbits under the proper icosahedral point-group Y ,  which are connected by a single flip. 
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Figure 8. Occupied vertices of the triaconrahedron in E' 

There are 40 additional possibilities of arranging the 20 Ammann rhombohedra inside the 
triacontahedral cage, but these do not occur in a perfect tiling (cf Luck in [IS]). 

4. Self-diffusion in the icosahedral Ammann-Kramer-Penrose pattern 

4.1. A single triacontahedral cage 

In the representation of atomic surfaces, 32 atomic triacontahedra belonging to the internal 
positions of the triacontahedral cage in E are attached to a central point (compare with 
figure 3 of the octagonal case). As, for the moment, our interest is directed towards the local 
properties of the extended atomic surface, we surround the central point by a small sphere S2. 
12 triacontahedra. which are attached to the central point by a five-fold vertex. cut spherical 
pentagons out of this sphere; 20 remaining ones, being attached by a three-fold vertex, are 
spherical triangles. Each of these 32 patches is an influence domain of one of the internal 
positions. Altogether they form a ten-sheeted covering of S 2 ,  since 10 of the 32 internal 
vertices of the triacontahedron are occupied for any generic phase xphXe E S'. Projected to 
the base space, the 32 patches do overlap and yield a decomposition of Sz into 120 spherical 
triangles. The resulting graph on Sz is equivalent to that of a polytope with 62 vertices, 180 
edges and 120 triangular faces, the dual of a truncated icosidodecahedron. The 62 vertices 
form three orbits under y.  12 of them have five-fold symmetry, 20 have threefold and the 
remaining 30 have two-fold symmetry. Each of the 120 faces on the sphere Sz represents 
one arrangement of the ten internal vertices of the triacontahedron in E. If we move xphnse 
across a boundary (one of the 180 edges), another decomposition of the triacontahedron is 
obtained, which differs from the initial one by a single Rip. (For an illustration of a single 
flip in the tiling space, see 1161.) Since the faces are triangles, three of the ten internal 
vertices of the triacontahedron are able to flip, starting from a given configuration. 

In figure 9(a) an elementary flip is depicted in E'. The decagon is the silhouette of 
the acceptance domain along a fivefold axis. On an infinitesimal change of the phase in 
a suitable direction, vertex 1 is moving out of the acceptance domain. The new vertex is 
like the old one, a five-fold vertex. Examination of the other three possible flips shows 
that three-fold vertices always remain three-fold ones when being flipped, and so do the 
five-fold ones. As for each generic xphSE E S2, three five-fold vertices and seven three-fold 
vertices are occupied, and since flipping does not change the character of a vertex (five- or 
three-fold), the ten-sheeted covering of Sz contains two disconnected parts: a seven-sheeted 
covering, consisting of 20 triangular patches, and a three-sheeted one, consisting of 12 
pentagonal patches. 
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Figure 9. (a)  First and (b)  lasf Rip occurring on a loop of xphrrc m u n d  3 branch point 

One would think that all of the 62 vertices on S2 are branch points. 50 of them, however, 
are merely intersections of edges of patches in the projection to the base space. Only the 
points, where more than two patches touch each other, i.e. the vertices of the patches, are 
branch points of the two coverings. Hence the branch points are just the 12 icosahedral 
vertices on S2, the set of which will be denoted B. Moving the phase through one of these 
branch points will be avoided for the sake of unambiguity. 

If xphase is traversing a loop y in S2\B, a step-by-step substitution of one vertex by 
another takes place. A given vertex does not disappear unless Xphase leaves the influence 
domain of the vertex, i.e. a spherical pentagon for a five-fold vertex, and a spherical triangle 
for athree-fold vertex. When xp+ returns to its initial position, the tiling obtains its original 
form, but with permutated atomic positions. 

Loops y in S2\B with base point xg can be lifted to the hvo coverings and lead to 
automorphisms of the two fibres p;'(xo) and p;'(xo): 

Figure 9 shows the first and the last flip induced by a loop of Xphax around a branch 
point; vertices marked by a square are the next ones to flip. 

The initial and final positions of the occupied vertices are identical; atoms 1 and 3, 
however, have exchanged their places and so have atoms 2 and 4. Hence a loop y encircling 
a branch point maps to the direct product of two transpositions in S3 x S,: 

( ( k y ' ,  k?, . . . , k?) denote the cycle decomposition of an element in the permutation group 
S,,.X,+ ...+.,. k, . A conjugate class is formed by elements of the same cycle structure.) 

Encircling two branch points corresponds to the class-product in S3 x SI. It depends 
on the relative position of the two branch points, which actually describes the permutation 
of the resulting class. This holds equally well for loops surrounding more than two branch 
points: some loops and their corresponding cycles in S3 and S7 are shown in figure 10. 

We now want to prove that all elements in S, x S, can be obtained by loops y E 
i7, (S'\B, xo).  This amounts to showing that the homomorphism f : X I  (S'\B. xo) H S3 x S,  
is surjective. The map f can be divided into two homomorphisms f3 and fl according to 
(5) .  In a first step we will show that these homomorphisms are surjective, and in a second 
step, that this holds equally for the composed homomorphism f. 
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z1 l1 3' 

2' 1' z2 l3  

1 2  
5 1  5' 2 '  3'2' 

Figure 10. Loops in S2\B and the corresponding cycles in Ss x Sr, 

Figure 11. The I 1  generators gi oin,(S2\B,xo). U 

The fundamental group n,(S2\B, xg) is the free group of 11 generators gi (i = 1 . . . 1 I ) ,  
which are chosen as indicated in figure 11 (the loop encircling the 12th branch point is the 
sum of the 11 generators). 

Each generator maps to a transposition both in S3 and in S7, which is illustrated in 
figure 12. 

Since a generative base of the symmetric group S,, is formed by n - I consecutive 
transpositions (12), (23), . . . , (n - 1, n) ,  the sets f&) and f 7 [ s i )  are generative in S, and 
S7, respectiveiy. Therefore the homomorphisms f3 and fi are surjective. 

In order to show that the composed homomorphism f is surjective as well, we first 
remark that two loops in  the kernel of f 7  can be found, so that their image under f3 
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1 4 

11 

6 9 

6 
1,7,8,9,10,11 I - 8  

Figure 12. Transpositions in S3 and S7, induced by the generators 8; 

provides a generative base in S3: 

This result shows that the homomorphism f is surjective, as can be seen as follows. 
Take an arbitrary permutation (u3, u7) E S3 x S7. Since f7 is surjective, M E f;l(u7) 

can be chosen, which yields f ( ~ )  = ( f 3 ( ~ ) ,  f 7 ( ~ ) )  = ( f3(~) .u7) .  Because Kerf7 is 
generative in S3, a loop r, with f3(y3) = [f3()q)]-'u3 can be composed by elements of 
Kerf?. Then n)q is a loop which yields the desired permutation (u3, U,): 

Thus all permutations in S3 x S7 can be obtained by loops in S2 \E .  

4.2. Two interlocked triacontahedral cages 

Loops of the phase in the neighbourhood of a vertex in E' have been shown to yield 
all possible permutations within the two sets of internal vertices of a triacontahedral cage. 
In the following, larger loops than the ones treated above will be considered. These lead to 
an exchange of atoms between interlocked triacontahedra. 

The 32 internal positions of a triacontahedral cage form two orbits under Y, namely the 
vertices of an icosahedron and those of a dodecahedron, respectively. Both polyhedra are 
concentric and their edges have the same lengths. 

In the case of two interlocked triacontahedra, the dodecahedron inside one 
macontahedral cage has five vertices in common with the icosahedron inside the other 
cage: more precisely, a face of the dodecahedron coincides with the 'baseface of the cap' 
of the icosahedron, as depicted in figure 13. (This is the icosahedral analogue to the two 
small octagons in figure 6.) 

Therefore there are 2 x (20 + 12 - 5) = 54 internal positions within two interlocked 
triacontahedral cages. In the dual space E', the internal positions of each triacontahedral 
cage are mapped onto a triacontahedron (figure 8). Since ten positions belong to the interior 
of both of the two triacontahedral cages in E,  the triacontahedra in E' do intersect along 
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Figure 13. Dodewhedion a d  attached icosahedron. Figure 14. 
triacontahedra. 

lntemol points inside two interlocked 

Figure 15. S2W2 with loops on it. 

a decagonal silhouette. Four of these 10 common positions are occupied by vertices (cf 
figure 8). Therefore there remain 2 x 10-4 = 16 internal vertices within the two interlocked 
triacontahedral cages. The positions of these 16 vertices are sketched schematically in 
figure 14, the two small circles representing icosahedra, the large ones dodecahedra. 

In the representation of atomic surfaces, i t  can be calculated how many possibilities of 
occupying the 54 internal positions with 16 vertices occur in a perfect tiling. 

The 54 possible positions in E correspond to 54 atomic triacontahedra. which are 
grouped around two vertices, separated by a basis vector. The local neighbourhood of these 
two vertices can be tested by two connected spheres S2#S2 1 S 2 ,  which are sketched in 
figure 15. 

Considerations analogous to those of testing one vertex by a sphere Sz yield a graph on 
S2#S2 equivalent to that of a polytope with 122 vertices, 350 edges and 230 faces. There- 
fore there are 230 possibilities of occupying 16 of the 54 internal positions in a perfect 
tiling. On each sphere Sz there are 12 branch points, one of which is eliminated from each 
sphere by constructing the connected sum S2#Sz. Hence there remain 2 x (12 - 1) = 22 
branch points on S2#S2, the set of which will be denoted i?. Loops in Sz#S2 \i? induce 
permutations in S, x S,. Starting the phase xphm on a point of the belt and traversing the 
'belt-loop' yo (figure 15) yields two transpositions within the four common points, which 
are depicted in figure 16. 

If, in a first step, the phase Xphw is moved along a loop encircling branch points on only 
one sphere (e.g. y~ in figure E), the vertices within one triacontahedral cage are permutated; 
vertices which only belonged to one triacontahedral cage may become common vertices of 
both cages. In a second step these vertices can be transferred out of the domain common 
to 60th cages into the second triacontahedral cage by moving xphws along a loop around 
branch points on the second sphere (e.g. y2). Thus any vertex of one triacontahedral cage 
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Figure 16. Transposition induced by transversing the 
'belt-looo'. 

can diffuse by elementary flips to the adjacent one. 

4.3. Global view and percolation limit 

Permutations of atomic positions within limited regions have been discussed by restricting 
the covering of the three-dimensional perpendicular space E' with triacontahedra to a 
covering of a two-dimensional testing surface. For a global view, the three-dimensional 
covering has to be considered. The branch lines of this covering are the edges of the atomic 
triacontahedra. The set of all branch lines forms a connected infinite graph of icosahedral 
basis vectors. The subset of icosahedral vectors encircled by a loop of the phase is generally 
not connected. Each connection component corresponds to one region in the tiling within 
which atomic permutations occur. In a small loop, permutations only occur within separated 
triacontahedral c a p s .  Enlarging the size of the loop leads to an increase of the number 
density of these triacontahedral cages. At a certain threshald an exchange of atoms between 
interlocked triacontahedral cages becomes possible. Further increases of the loop size yield 
larger and larger clusters of interlocked triacontahedral cages, between which exchange 
of atoms is possible. If an infinite chain of icosahedral vectors is encircled by the loop, 
the percolation limit is obtained, and infinite clusters appear, thus permitting long-distance 
self-diffusion. 

In contrast to the octagonal case. the self-diffusion in the icosahedral Ammann-Kramer- 
Penrose tiling is a two-component diffusion: the lattice Z6 is the union of two icosahedrally 
invariant sublattices, Z2vcn (which is the root lattice 0 6 )  and Zidd, with 

Hence there are two disjoint sets of atomic positions in the tiling: n(Ztvcn) and ~ ( 2 : ~ ~ ) .  
Whereas the set a(Z6) displays a r3 inflation behaviour, n(Z2ven) is invariant through the 
dilatation of ratio r [17]. It can be shown that flips do not lead to transitions between 

and ~ ( 2 2 ~ ) .  This means that the covering of E with atomic triacontahedra 
consists of two disconnected pieces and that phase-induced atomic permutations take place 
separately in two subquasilattices. 

5. Summary and outlook 

Up to now. global uniform phason shifts have been discussed. These are unlikely to be the 
physical mechanism for diffusion in quasicrystals. If we replace the global phase shift by a 
local one, all considerations concerning the permutation of atoms remain valid, but matching 
rule violations appear during the shift of the phase. By attributing an activation energy to 
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these matching rule violations and to the barrier for the elementary Rips, a temperature 
dependent probability for the corresponding self-diffusion process can be established, similar 
to the case of an octagonal lattice [181, though the phase structure of a three-dimensional 
model might be more complicated. 
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